The next three problems deal with the part "integers, division, and modular arithmetic" of the course Introduction to Mathematics. For each of them you obtain at most 6 points; together with 2 extra points you get for free, this means that you can score between 2 and 20 points for this part of the exam.

28 November 2013.
(1) [6 points] Suppose that n and m are integers and that at least one of them is nonzero. Prove that

$$
\operatorname{gcd}(n+m, 2 n)=\operatorname{gcd}(n+m, 2 m) .
$$

(2) ([2 points]) Is $42 \bmod 101 \in \mathbb{Z} /(101)$ a unit?

Find an integer x such that $42 x \equiv 47 \bmod 101$ ([4 points]).
(3) This problem discusses the integer $n:=28^{112013}-1288$.
(a) $[1+1$ points $]$ Explain why n is divisible by 8 and by 7 .
(b) $[1+1$ points $]$ Explain why n is divisible by 5 and by 10 .
(c) [2 points] Prove that $m \mid n$ for every $m \in\{1,2,3,4,5,6,7,8,9,10\}$.

